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Abstract
We study the behaviour of truncated Rayleigh–Schrödinger series for the
low-lying eigenvalues of the one-dimensional, time-independent Schrödinger
equation, in the semiclassical limit h̄ → 0. Under certain hypotheses on the
potential V (x), we prove that for any given small h̄ > 0 there is an optimal
truncation of the series for the approximate eigenvalues, such that the difference
between an approximate and exact eigenvalue is smaller than exp(−C/h̄) for
some positive constant C. We also prove the analogous results concerning the
eigenfunctions.

PACS numbers: 0365, 0230L

AMS classification scheme number: 81Q20

1. Introduction

Let us consider the time-independent Schrödinger equation[
− h̄2

2

d2

dx2
+ V (x)

]
	̃(x) = E	̃(x) (1)

where the potential energy V (x) satisfies the following assumptions:
Hypothesis (H1). Let V (x) be a C∞ real function on −∞ < x < ∞, with a unique global
minimum V (0) = 0 at x = 0, V ′′(0) = 1, and lim inf |x|→∞ V (x) > 0.

This hypothesis is sufficient to ensure the existence of discrete eigenvalues of (1)
below the continuous spectrum for small h̄, as several authors have proved using different
approaches [1, 5, 6]. Also, the eigenvalues and eigenvectors have asymptotic expansions in
powers of h̄ given by formal Rayleigh–Schrödinger (RS) series. The papers [1, 5] deal with
the one-dimensional case, whereas [6] extends this result to several dimensions.

As far as we know there are no results concerning the behaviour of truncations of these
series, which should provide approximate solutions of equation (1). The main goal of this
paper is to prove that for sufficiently small values of h̄ there is an optimal truncation of
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approximate eigenvalues, such that the difference between an approximate and exact eigenvalue
is smaller than exp(−constant/h̄) for some positive constant. We also prove the analogous
results concerning the eigenfunctions. A more precise statement of these assertions is the
following: suppose EN and 	̃N are the N th approximations (given by the RS series) of Ek

and 	̃k , the exact kth eigenvalue and eigenfunction of (1). Let B = B(k) > 0 be a constant to
be defined later. Then we have the following theorems.

Theorem. For each 0 < g < B−2, there exists 0 < h̄g , such that for each h̄ � h̄g , there is
N(h̄), so that

|EN(h̄)(h̄) − Ek(h̄)| � � exp

(
− �

h̄

)

for some � > 0 and � > 0.

Theorem. If g, h̄g , N(h̄), � and � are defined as in the theorem above, then

‖	̃N(h̄)(h̄; x) − 	̃k(h̄; x)‖ � 8� exp

(
− �

h̄

)
.

Our technique is closely related to one developed in [3]. Basically we calculate upper
bounds for each term in the RS series for both eigenvalues and eigenfuctions. Then we combine
these to obtain a recursion relation that yields an estimate for the growth of these terms. From
that we compute an estimate of the difference of the two sides of (1) after truncation at order N ;
this estimate behaves like abNh̄

N
2 (N !)

1
2 . For each h̄ we choose N to minimize this quantity.

This and some standard results of functional analysis yield our results. A critical part of this
procedure makes use of control on decay of the harmonic oscillator eigenfunctions and some
assumptions about analyticity of the potential V (x). Results about the spacing of eigenvalues
for small h̄ are also crucial for our results about the eigenfunctions.

Hypothesis (H1) contains the requirement of uniqueness of the global minimum of V (x).
IfV (x) has multiple wells with the same minimum, our technique approximate energies that are
exponentially close to the spectrum, but the states we construct may not be good approximations
to eigenfunctions. It is well known that when V (x) has multiple wells, tunnelling plays a
central role. In these systems there are subsets of eigenvalues that differ from one another
by an exponetially small function of h̄, and the eigenfuctions can be large in more than one
well [4,7]. For that reason our technique, as presented here, only works if the potential energy
function has a unique well. In fact, the assumption that there is a unique well is not required
in [1, 6] (but is in [5]) in order to prove existence of eigenvalues as mentioned above.

This paper is organized as follows. In section 2 we make a transformation of equation (1)
that allows us to obtain a manageable recursion relation for the nth term of the RS series. In
section 3 we state and prove an estimate of the growth of these terms. We define a residual error
function for equation (1) and prove an estimate for it. The main results are stated precisely in
section 4. The appendix is devoted to a boring computation needed in section 3.

We only analyse the one-dimensional problem. The multi-dimensional case will be
discussed elsewhere.

2. Preliminaries

As was already mentioned, we need a further assumption about V (x):
Hypothesis (H2). Suppose that V (x) has an analytic extension to a neighbourhood of the
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region Sδ = {z : |Im z| � δ} and satisfies |V (z)| � M exp(τ |z2|) when z ∈ Sδ , for some
positive constants M > 0 and 1

4 > τ > 0.
This hypothesis allows us to control the behaviour of derivatives of V (x) far from the

potential well.
It is convenient to transform equation (1). We scale x → h̄

1
2 x and then divide by h̄. This

yields [
−1

2

d2

dx2
+ V (h̄; x)

]
	̃(h̄; x) = E(h̄)	̃(h̄; x). (2)

(H1) implies that we may write V (h̄; x) = 1
2x

2 +W(h̄; x) with obvious definition of W(h̄; x).
Now let us write (2) as

[H0 + W(h̄; x)]	̃(h̄; x) = E(h̄)	̃(h̄; x) (3)

where H0 = − 1
2

d2

dx2 + 1
2x

2 is the harmonic oscillator Hamiltonian with eigenvalues ek = k+1/2
and eigenstates φk , for integer k � 0. Because V (x) satisfies (H1), a theorem [1, 5, 6] allows
us to assert that, for each non-negative integer k, there exists h̄0 such that there are at least k + 1
eigenvalues of (1) for all h̄ � h̄0. Moreover,

lim
h̄→0

El(h̄) = el

for 0 � l � k + 1. Also, each El(h̄) has an asymptotic expansion in powers of h̄1/2 around el .
The analogous statement holds for eigenfunctions.

The function W(h̄; x) can be asymptotically approximated by its Taylor series at any
order n:

W(h̄; x) =
n∑

l=3

h̄
l−2

2 clx
l + O(h̄

n−1
2 xn+1) (4)

where cl = 1
l!V

[l](0).
Because we are interested in the semiclassical limit (i.e. h̄ → 0), we may considerW(h̄, x)

as a perturbation of H0 and proceed with standard perturbation theory. That is, we write down
formal RS series for ψ̃ and E around the kth eigenstate/eigenvalue of H0

	̃(x) = φk(x) + h̄
1
2 ψ̃1(x) + h̄

2
2 ψ̃2(x) + h̄

3
2 ψ̃3(x) + h̄

4
2 ψ̃4(x) + · · · (5)

E(h̄) = ek + h̄
1
2 E1 + h̄

2
2 E2 + h̄

3
2 E3 + h̄

4
2 E4 + · · · (6)

substitute these into (3), equate powers of h̄
1
2 , etc. Before doing so, to simplify some of the

estimates, we transform (3) in the following way. We define a new operator Ak by Akφk = φk ,
Akφj = |k − j |− 1

2 φj for j �= k, and extend it to all of the underlying Hilbert space H. Then
Ak maps H onto the quadratic form domain of H0. Because D(H0 + W(h̄; x)) is a subset
of D(H0), for each ϕ̃ ∈ D(H0 + W(h̄; x)) there is ϕ ∈ H such that ϕ̃ = Akϕ. We define
Hk = Ak(H0 − ek)Ak . This operator satisfies Hkφj = −φj for j < k, Hkφk = 0, and
Hkφj = φj for j > k. With these operators, (3) can be rewritten as

[Hk + AkW(h̄; x)Ak]	(x) = (E(h̄) − ek)(Ak)
2	(x) (7)

and instead of (5) we have

	(x) = φk(x) + h̄
1
2 ψ1(x) + h̄

2
2 ψ2(x) + h̄

3
2 ψ3(x) + h̄

4
2 ψ4(x) + · · · . (8)

Now let us equate powers of h̄
1
2 . After replacing W(h̄; x) by its Taylor series, we obtain, for

n = 1, 2, . . . ,

Hkψn +
n∑

l=1

cl+2Akx
l+2Akψn−l =

n∑
l=1

El(Ak)
2ψn−l (9)
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where ψ0 = φk .
For the moment we do not require that 	(x) be normalized. Instead we choose each ψj

to be orthogonal to φk . This does not affect the eigenvalues. Using the selfadjointness of
Akx

lAk , we see that (9) requires

En =
n∑

l=1

cl+2〈Akx
l+2Akφk, ψn−l〉 (10)

ψn = (Hk)
−1
r

( n∑
l=1

El(Ak)
2ψn−l −

n∑
l=1

cl+2Akx
l+2Akψn−l

)
(11)

where (Hk)
−1
r is the inverse of the restriction of Hk to the subspace orthogonal to φk . If we

define Pj�m to be the projection onto the subspace spanned by {φj : j � m } then an easy
induction argument applied to (11) shows that ψl ∈ Ran(Pj�k+3l). Then, from (10) and (11)
we immediately obtain the following inequalities:

|En| �
n∑

l=1

|cl+2|‖Akx
l+2AkPj�k‖‖ψn−l‖ (12)

‖ψn‖ �
n∑

l=1

|El|‖ψn−l‖ +
n∑

l=1

|cl+2|‖Akx
l+2AkPj�k+3(n−l)‖‖ψn−l‖. (13)

To obtain explicit bounds from these, we use the following result.

Lemma 1. For m � 1 and n � 0,

‖Akx
mAkPj�n‖ � 2

m
2 (2 + k)

[
(n + m − 1)!

(n + 1)!

] 1
2

.

Proof. Since Ran(xAkPj�n) ⊂ Ran(Pj�n+1) we have xAkPj�n = Pj�n+1xAkPj�n. Thus,

‖Akx
mAkPj�n‖ � ‖Akx‖‖xm−2Pj�n+1‖‖xAk‖.

Let {φi}∞i=0 be the basis of eigenfunctions of H0. Then any ϕ ∈ H can be written as
ϕ = ∑∞

i=0 diφi . An easy calculation shows that

Akxϕ = 1√
2

( k−1∑
i=0

di+1

√
i + 1

k − i
φi + dk+1

√
k + 1φk +

∞∑
i=k+1

di+1

√
i + 1

i − k
φi

)

+
1√
2

( k−1∑
i=1

di−1

√
i

k − i
φi + dk−1

√
kφk +

∞∑
i=k+1

di−1

√
i

i − k
φi

)

so we can write Akxϕ = ϕ1 + ϕ2 where ϕ1,2 are defined in the obvious way. Clearly,
‖Akxϕ‖ � ‖ϕ1‖ + ‖ϕ2‖. Now

‖ϕ1‖2 = 1

2

( k−1∑
i=0

|di+1|2 i + 1

k − i
+ |dk+1|2(k + 1) +

∞∑
i=k+1

|di+1|2 i + 1

i − k

)

� 1
2

(
k

k−1∑
i=0

|di+1|2 + (k + 1)|dk+1|2 + (k + 2)
∞∑

i=k+1

|di+1|2
)

� 1
2 (k + 2)‖ϕ‖2

and a similar argument yields

‖ϕ2‖2 � 1
2 (k + 1)‖ϕ‖2.
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Hence,

‖Akx‖ �
√

k + 1

2
+

√
k + 2

2
�

√
2(2 + k).

By taking the adjoint of previous estimate we have

‖xAk‖ �
√

2(2 + k).

Finally, we make use of lemma 5.1 of [3] to complete the proof. �

In (H2) we assume that V (x) has an analytic extension, so (4) has a non-zero radius of
convergence. Thus, there is a constant c > 0 such that |cl| � c. Therefore, we may obtain
nicer bounds from both (12) and (13), namely

|En| � 2c(2 + k)

n∑
l=1

2
l
2

[
(1 + k + l)!

(1 + k)!

] 1
2

‖ψn−l‖ (14)

‖ψn‖ �
n∑

l=1

|El|‖ψn−l‖ + 2c(2 + k)

n∑
l=1

2
l
2

[
(1 + k + 3n − 2l)!

(1 + k + 3n − 3l)!

] 1
2

‖ψn−l‖. (15)

Finally, substituting (14) into (15), we obtain

‖ψn‖ � 2c(2 + k)

n∑
l=1

l∑
i=1

2
i
2

[
(1 + k + i!

(1 + k)!

] 1
2

‖ψl−i‖‖ψn−l‖

+2c(2 + k)

n∑
l=1

2
l
2

[
(1 + k + 3n − 2l)!

(1 + k + 3n − 3l)!

] 1
2

‖ψn−l‖. (16)

We prove below that the second term in (16) behaves roughly like a
√

1 + k + n‖ψn−1‖,
and that this is the dominant term in (16). So, we expect the growth of ‖ψn‖ (and hence |En|)
to be dominated by something like an

√
n!.

3. The main estimates

From (16) we can derive a bound for the growth of ‖ψn‖ for large n. To do so, we may assume
without loss that c � 1. In addition, we need two technical results that are summarized in the
following lemma.

Lemma 2.

(i) For each k � 0 there is a constant γk so that, for all m � 0,

m∑
l=0

[
(1 + k + m − l)!(1 + k + l)!

(1 + k + m)!

] 1
2

� γk.

(ii) For all k � −1 there is a constant β so that, for all m � 0,

m∑
l=0

2− 5l
2

[
(1 + k + 3m − 2l)!(1 + k + m − l)!

(1 + k + 3m − 3l)!(1 + k + m)!

] 1
2

� β.
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Proof. (i)

m∑
l=0

[
(1 + k + m − l)!(1 + k + l)!

(1 + k + m)!

] 1
2

= 2[(1 + k)!]
1
2 + 2

[
(2 + k)!

1 + k + m

] 1
2

+
m−2∑
l=2

[
(1 + k + m − l)!(1 + k + l)!

(1 + k + m)!

] 1
2

� 2[(1 + k)!]
1
2 + 2

[
(2 + k)!

1 + k

] 1
2

+(m − 4) max
2�l�[ m

2 ]

[
(1 + k + m − l)!(1 + k + l)!

(1 + k + m)!

] 1
2

where [α] denotes the greatest integer less than or equal to α. If l � [m
2 ] − 1, then 2l + 1 � m.

Thus, (1 + k + m − l)!(1 + k + l)! is decreasing for l � [m
2 ]. Therefore,

m∑
l=0

[
(1 + k + m − l)!(1 + k + l)!

(1 + k + m)!

] 1
2

� 2[(1 + k)!]
1
2 + 2

[
(2 + k)!

1 + k

] 1
2

+ [(3 + k)!]
1
2
m − 4

m + k
.

The last term converges as m → ∞, so existence of the constant γk is guaranteed.
(ii) By cancelling common factors, we have

m∑
l=0

2− 5l
2

l∏
s=1

(
1 + k + 3m − 3l + s

1 + k + m − l + s

)1
2

.

For k � −1 and s � 0, we have 0 � 2(1 + k + s). This implies

1 + k + 3m − 3l + s

1 + k + m − l + s
� 3.

Therefore,

m∑
l=0

2− 5l
2

[
(1 + k + 3m − 2l)!(1 + k + m − l)!

(1 + k + 3m − 3l)!(1 + k + m)!

] 1
2

�
m∑
l=0

2− 5l
2 3

l
2

and the right-hand side converges to β = (1 −
√

3/25)−1. �

Theorem 1. For each k � 0 and for n � 1,

‖ψn‖ � 23n[2c(2 + k)(γ 2
k [(1 + k)!]−

1
2 + β)]n[(1 + k + n)!]

1
2 .

Proof. Fix k � 0. For n = 1 the inequality (16) becomes

‖ψ1‖ � 22c(2 + k)2
1
2 (2 + k)

1
2 .

From the proof of lemma 2 it follows that γ 2
k [(1 + k)!]−

1
2 + β � 1. Thus,

22c(2 + k)2
1
2 (2 + k)

1
2 � 232c(2 + k)(γ 2

k [(1 + k)!]−
1
2 + β) [(2 + k)!]

1
2

so the assertion is true for n = 1 and for each k � 0.
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Now assume the inequality is satisfied for all i < n. Let b = 2c(2+k)(γ 2
k [(1+k)!]−

1
2 +β).

As we have pointed out above, we may assume that c � 1. We already know that
γ 2
k [(1 + k)!]−

1
2 + β � 1, so we conclude that b � 1. From (16) it follows that

‖ψn‖ � 2c(2 + k)

n∑
l=1

l∑
i=1

2
i
2

[
(1 + k + i)!

(1 + k)!

] 1
2

23(n−i)bn−i[(1 + k + n − l)!(1 + k + l − i)!]
1
2

+2c(2 + k)

n∑
l=1

2
l
2

[
(1 + k + 3n − 2l)!

(1 + k + 3n − 3l)!

] 1
2

23(n−l)bn−l[(1 + k + n − l)!]
1
2

� 2c(2 + k)23nbn−1
n∑

l=1

l∑
i=1

2− 5i
2

[
(1 + k + i)!

(1 + k)!

] 1
2

[(1 + k + n−l)!(1 + k + l−i)!]
1
2

+2c(2 + k)23nbn−1
n∑

l=1

2− 5l
2

[
(1 + k + 3n − 2l)!

(1 + k + 3n − 3l)!

] 1
2

[(1 + k + n − l)!]
1
2

� 2c(2 + k)23nbn−1

[
(1 + k + n)!

(1 + k)!

] 1
2 n∑

l=1

[
(1 + k + n − l)!(1 + k + l)!

(1 + k + n)!

] 1
2

×
l∑

i=1

[
(1 + k + l − i)!(1 + k + i)!

(1 + k + l)!

] 1
2

+ 2c(2 + k)23nbn−1 [(1 + k + n)!]
1
2

×
n∑

l=1

2− 5l
2

[
(1 + k + 3n − 2l)!(1 + k + n − l)!

(1 + k + 3n − 3l)!(1 + k + n)!

] 1
2

.

We now use lemma 2 to obtain

‖ψn‖ � [2c(2 + k)(γ 2
k [(1 + k)!]−

1
2 + β)]23nbn−1[(1 + k + n)!]

1
2

= 23nbn[(1 + k + n)!]
1
2 .

�
The next step is to bound the error made by taking a finite number of terms in both series (8)

and (6). We use the following approach, which follows the ideas of [3]. For N � 1 define

EN = ek +
N−1∑
n=1

h̄
n
2 En 	N(x) = φk(x) +

N−1∑
n=1

h̄
n
2 ψn(x). (17)

These are the truncation at order N of the RS series. We define

ξN(x) = Ak(H0 + W(h̄; x) − EN)Ak	N(x)

=
[
Hk + AkW(h̄; x)Ak −

N−1∑
j=1

h̄
j

2 Ej (Ak)
2

] N−1∑
m=0

h̄
m
2 ψm(x). (18)

This function is the error in the time-independent Schrödinger equation due to truncation, at
order N , of both (8) and (6). There is a plethora of cancellations in (18), that are described in
the appendix. After making these cancellations, we have

ξN(x) =
N−1∑
n=0

h̄
n
2 AkW

[N+1−n](h̄; x)Akψn(x)−
2N−2∑
n=N

h̄
n
2

N−1∑
l=n−N+1

El(Ak)
2ψn−l(x)

where W [j ](h̄; x) = V (h̄; x)−∑j

l=0 h̄
l−2

2 clx
l is the Taylor series error (at order j ) of V (h̄; x).

The Taylor theorem says that

W [j ](h̄; x) = h̄
j−1

2
V [j+1](η)

(j + 1)!
xj+1
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for some η ∈ (−|x|, |x|). From this, we obtain

ξN(x) = h̄
N
2

N−1∑
m=0

Ak

V [N+2−m](ηm)

(N + 2 − m)!
xN+2−mAkψm(x) −

2N−2∑
m=N

h̄
m
2

N−1∑
l=m−N+1

El(Ak)
2ψm−l(x) (19)

with ηm ∈ (−|x|, |x|), m = 0, . . . , N − 1.
Our main result relies on an estimate of ‖(H −EN)Ak	N(x)‖, so we need an upper bound

of the L2-norm of A−1
k ξN(x). Note that A−1

k is an unbounded operator, but that ξN(x) is clearly
in its domain.

Proposition 1. For each k � 0, there exist positive constants A, B and N0 such that

‖A−1
k ξN(x)‖ �

2N∑
n=N

ABnh̄
n
2 [(2 + k + n)!]

1
2

whenever N � N0 and h̄ � 1.

Proof. We separately prove estimates inside and outside a closed interval [−R,R], where
R = √

2k + 6N + 3. Let χR be the characteristic function defined by χR(x) = 1 if
x ∈ [−R,R], and χR(x) = 0 otherwise. From (19) it follows that

‖A−1
k ξN(x)‖ � h̄

N
2

N−1∑
n=0

∥∥∥∥V [N+2−n](ηn)

(N + 2 − n)!
xN+2−nAkψn(x)

∥∥∥∥ +
2N−2∑
n=N

h̄
n
2

N−1∑
l=n−N+1

|El|‖ψn−l(x)‖

� h̄
N
2

N−1∑
n=0

∥∥∥∥V [N+2−n](ηn)

(N + 2 − n)!
xN+2−n(1 − χR(x))Akψn(x)

∥∥∥∥
+h̄

N
2

N−1∑
n=0

∥∥∥∥V [N+2−n](ηn)

(N + 2 − n)!
xN+2−nχR(x)Akψn(x)

∥∥∥∥
+

2N−2∑
n=N

h̄
n
2

N−1∑
l=n−N+1

|El|‖ψn−l(x)‖ (20)

where we have used that h̄ � 1 implies h̄
n
2 � h̄

N
2 for n � N .

To estimate the first term of (20) we need to control the Taylor series error outside [−R,R].
An easy argument using the Cauchy integral formula (and the hypothesis onV ; see [2,3]) shows
that for η ∈ (−|x|, |x|) and for all n � 0,

δn
|V [n](η)|

n!
� M exp[τ(|x| + δ)2] � M exp(2τδ2) exp(2τx2) =: K exp(2τx2). (21)

Later we will assume that δ � 1. Also, we recall that the eigenfunctions of the harmonic
oscillator H0 are φk(x) = π− 1

4 (2kk!)−
1
2 exp(− 1

2x
2)Hn(x), where Hk(x) are the Hermite

polynomials.
We have the following estimate.

Lemma 3. For n = 0, 1, . . . , N − 1 and for R = √
2k + 6N + 3,∥∥∥∥δN+2−n V

[N+2−n](ηn)

(N + 2 − n)!
xN+1−n[1 − χR(x)]Pj�k+3n+1

∥∥∥∥ � K2
2+k+3n

2 [(2 + k + N + 2n)!]
1
2

π
1
4 (1 − 4τ)

3+k+N+2n
2 [(k + 3n)!]

1
2

.
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Proof of lemma 3. Consider any φi(x) with i = 0, 1, . . . , k + 3n + 1. We have∥∥∥∥δN+2−n V
[N+2−n](ηn)

(N + 2 − n)!
xN+1−n[1 − χR(x)]φi(x)

∥∥∥∥
2

� K2
∫

R\[−R,R]
e4τx2

x2(N+1−n)|φi(x)|2 dx

� 2K2

π
1
2 2i i!

∫ ∞

R

e−(1−4τ)x2
x2(N+1−n)|Hi(x)|2 dx.

Because R �
√

2i + 1 we may make use of lemma 3.1 of [2] to estimate the last integral. This
lemma states that |Hi(x)| � 2i |x|i whenever x �

√
2i + 1. Thus,∥∥∥∥δN+2−n V

[N+2−n](ηn)

(N + 2 − n)!
xN+1−n[1 − χR(x)]φi(x)

∥∥∥∥
2

� 2i+1K2

π
1
2 i!

∫ ∞

R

e−(1−4τ)x2
x2(N+1−n+i) dx

� 2i+1K2

π
1
2 i!

∫ ∞

0
e−(1−4τ)x2

x2(N+1−n+i) dx

= 2iK2�(N + 1 − n + i + 1
2 )

π
1
2 i!(1 − 4τ)N+1−n+i+ 1

2

� 2iK2(N + 1 − n + i)!

π
1
2 i!(1 − 4τ)N+1−n+i+ 1

2

.

To obtain this last inequality, we have used the fact that �(x) is an increasing function when
x � 2. Using the Schwarz inequality, we then conclude that∥∥∥∥δN+2−n V

[N+2−n](ηn)

(N + 2 − n)!
xN+1−n[1 − χR(x)]Pj�k+3n+1

∥∥∥∥ �
[ 1+k+3n∑

i=0

2iK2(N + 1 − n + i)!

π
1
2 i!(1 − 4τ)N−n+i+1

] 1
2

.

Note that the terms on the right-hand side are increasing in i. The sum is bounded by the
number of terms times the (2 + k + 3n) times the largest term. The lemma follows because
(2 + k + 3n)/(1 + k + 3n) � 2. �

From the proof of lemma 1 we know that ‖xAk‖ �
√

2(2 + k). Also, we are assuming
that δ � 1. Since furthermore ψl ∈ Ran(Pj�k+3l), the first term of (20) satisfies

1st term � h̄
N
2 δ−N−2

×
N−1∑
n=0

∥∥∥∥δN+2−n V
[N+2−n](ηn)

(N + 2 − n)!
xN+1−n[1 − χR(x)]Pj�k+3n+1

∥∥∥∥ ‖xAk‖‖ψn‖

�
√

2(2 + k)h̄
N
2 δ−N−2

×
N−1∑
n=0

∥∥∥∥δN+2−n V
[N+2−n](ηn)

(N + 2 − n)!
xN+1−n[1 − χR(x)]Pj�k+3n+1

∥∥∥∥ ‖ψn‖.

We use lemma 3, the estimate of ‖ψn(x)‖ of theorem 1, and arrange factorials to obtain

1st term �
√

2(2 + k)2
2+k

2 h̄
N
2 δ−N−2Kπ− 1

4 (1 − 4τ)−
k+3N−1

2 bN−1

× max
0�n�N−1

[
(1 + k + 3n)(2 + k + 3n)

2 + k + n

] 1
2

×
N−1∑
n=0

2
9n
2

[
(2 + k + N + 2n)!(2 + k + n)!

(2 + k + 3n)!

] 1
2

.
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Because 2 + k + 3n � 6 + 3k + 3n for all k � 0 and n � 0, we have

max
0�n�N−1

[
(1 + k + 3n)(2 + k + 3n)

2 + k + n

] 1
2

� 3
1
2 (k + 3N − 2)

1
2 .

We change the summation index to l = N − n and then use the second inequality of lemma 2
to conclude

1st term �
√

2(2 + k)2
2+k+9N

2 3
1
2 h̄

N
2 δ−N−2Kπ− 1

4 (1 − 4τ)−
k+3N−2

2 bN−1

×(k + 3N − 2)
1
2 [(2 + k + N)!]

1
2

×
N∑
l=1

2− 5l
2

[
(2 + k + 3N − 2l)!(2 + k + N − l)!

(2 + k + 3N − 3l)!(2 + k + N)!

] 1
2

�
√

3(2 + k)2
3+k+9N

2 h̄
N
2 δ−N−2K(1−4τ)−

k+3N
2 bN−1β(k + 3N−2)

1
2 [(2 + k + N)!]

1
2 .

(22)

We now estimate the second term in (20). An argument involving the Cauchy integral
formula, similar to the one mentioned above, shows that

sup
n�0, x∈[−R,R]

δn
|V [n](x)|

n!
� M exp

[
τ

(√
2k + 6N + 3 + δ

)!2
]

� D exp(12τN)

where D := M exp(2τ(2k + δ2 + 3)). Thus, the second term in (20) satisfies

2nd term � h̄
N
2 δ−N−2

N−1∑
n=0

∥∥∥∥δN+2−n V
[N+2−n](ηn)

(N + 2 − n)!
xN+2−nχR(x)AkPj�k+3n

∥∥∥∥ ‖ψn‖

� h̄
N
2 δ−N−2

N−1∑
n=0

∥∥∥∥δN+2−n V
[N+2−n](ηn)

(N + 2 − n)!
χR(x)x

N+1−nPj�k+3n+1

∥∥∥∥ ‖xAk‖‖ψn‖

�
√

2(2 + k)h̄
N
2 δ−N−2De12τN

N−1∑
n=0

‖xN+1−nPj�k+3n+1‖‖ψn‖.

So using our bound from theorem 1, lemma 5.1 of [3], and switching indices by n = N − l,
we obtain

2nd term �
√

2(2 + k)2
N+1

2 De12τNh̄
N
2 δ−N−2bN−1

×
N−1∑
n=0

2
5n
2

[
(2 + k + N + 2n)!(1 + k + n)!

(1 + k + 3n)!

] 1
2

�
√

2(2 + k)2
6N+1

2 De12τNh̄
N
2 δ−N−2bN−1

×[(2 + k + N)!]
1
2 max

0�n�N−1

(
2 + k + 3n

2 + k + n

)1
2

×
N∑
l=1

2− 5l
2

[
(2 + k + 3N − 2l)!(2 + k + N − l)!

(2 + k + 3N − 3l)!(2 + k + N)!

] 1
2

�
√

3(2 + k)23N+1De12τNβh̄
N
2 δ−N−2bN−1[(2 + k + N)!]

1
2 . (23)

Finally, to estimate the third term of (20) we need the inequality (14), the estimate of
theorem 1 and the first part of lemma 2:

3rd term �
2N−2∑
n=N

h̄
n
2

N−1∑
l=1

|El|‖ψn−l‖
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� 2c(2 + k)

2N−2∑
n=N

h̄
n
2

n∑
l=1

l∑
i=1

2
i
2

[
(1 + k + i)!

(1 + k)!

] 1
2

‖ψn−l‖‖ψl−i‖

� c(2 + k)[(1 + k)!]−
1
2

2N−2∑
n=N

23n−2bn−1h̄
n
2 [(2 + k + n)!]

1
2

×
n∑

l=1

[
(1 + k + n − l)!(1 + k + l)!

(1 + k + n)!

] 1
2 l∑

i=1

[
(1 + k + l − i)!(1 + k + i)!

(1 + k + l)!

] 1
2

� c(2 + k) [(1 + k)!]−
1
2 γ 2

k

2N∑
n=N

26n−2b2n−3h̄
n
2 [(2 + k + n)!]

1
2 . (24)

Now let us collect what we have done so far. Estimate (22) may be written as

1st term � A1B
N
1 (k + 3N − 2)

1
2 h̄

N
2 [(2 + k + N)!]

1
2

for some constants A1 and B1. Choose N0 � 1 so that k + 3N0 − 2 � 2N0 . Then

1st term � A1 (2B1)
N h̄

N
2 [(2 + k + N)!]

1
2

for all N � N0. By the same reasoning, there are constants A2, B2, A3 and B3, such that
estimates (23) and (24) are given by

2nd term � A2 B
N
2 h̄

N
2 [(2 + k + N)!]

1
2

3rd term �
2N∑
n=N

A3 B
n
3 h̄

n
2 [(2 + k + n)!]

1
2 .

Finally, define A = 3 max{A1, A2, A3} and B = max{2B1, B2, B3} to complete the proof
of proposition 1. �

4. Exponentially small truncation

Fix k � 0. Our goal is to obtain a nice estimate for |EN − Ek| and ‖	̃N − 	̃k‖, where Ek is
the kth eigenvalue of the actual Hamiltonian H := H0 + W(h̄; x) and 	̃k is the corresponding
normalized eigenfunction. 	̃N = ‖Ak	N‖−1Ak	N ; EN and 	N are the quantities obtained
by truncation defined in (17).

Proposition 2. There exists h̄k > 0 so that for each h̄ � h̄k there is an Nk(h̄) � N0 such that

|EN(h̄) − Ek(h̄)| �
2N∑
n=N

ABn h̄
n
2 [(2 + k + n)!]

1
2

for all h̄ � h̄k and N0 � N � Nk(h̄).

Before starting the proof of this proposition let us state a general result concerning
asymptotic series.

Lemma 4. Suppose
∑

n=0 fnβ
n is asymptotic to f (β) in the sense that given N � N0, there

exists CN and β(N) such that for all β � β(N)∣∣∣∣ f (β) −
N−1∑
n=0

fn β
n

∣∣∣∣ < CN βN.
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Then, given ε > 0, there exists β(ε) > 0 such that for each β � β(ε) there is an N(β) � N0

(maybe equal to ∞), so that∣∣∣∣f (β) −
N−1∑
n=0

fn β
n

∣∣∣∣ � ε (25)

whenever N0 � N < N(β).

Proof. Fix ε > 0. Define β1(N0) = (ε C−1
N0

)1/N0 . Then for N > N0, recursively choose

positive numbers β1(N) that satisfy β1(N) < min{(ε C−1
N )1/N , β1(N − 1)}. Then (25) will

be satisfied whenever β < β1(N).
Define β(ε) = β1(N0), and define

N(β) =
{
N + 1 if β1(N + 1) < β � β1(N)

∞ if β < β1(N) for all N .

Then (25) holds whenever N0 � N � N(β). �

Proof of proposition 2. Suppose h̄ � h̄1 := min{1, h̄0} and N � N0. Then there exist at least
k + 1 eigenvalues of H and the estimate of proposition 1 holds. Let N1(h̄) be defined to be the
largest N � N0 which satisfies

2N1(h̄)∑
n=N1(h̄)

ABn h̄
n
2 [(2 + k + n)!]

1
2 � 1

4

(this requirement can always be satisfied by reducing h̄1 if necessary). Then for all N0 � N �
N1(h̄), we have

2N∑
n=N

ABn h̄
n
2 [(2 + k + n)!]

1
2 � 1

4 . (26)

On the other hand, note that 	N = φk + ϕN , where ϕN is orthogonal to φk because of the
normalization we chose for the correction terms ψn(x). Since Akφk = φk , we conclude that
‖Ak	N(h̄; x)‖ � 1. So proposition 1 implies that

‖(H − EN(h̄))Ak	N(x)‖ �
2N∑
n=N

ABnh̄
n
2 [(2 + k + n)!]

1
2 ‖Ak	N(h̄; x)‖. (27)

We may assume that EN(h̄) �∈ σ(H), so (H − EN(h̄)) is invertible. It follows that{ 2N∑
n=N

ABnh̄
n
2 [(2 + k + n)!]

1
2

}−1

� ‖(H − EN(h̄))−1‖.

Because H is selfadjoint, ‖(H − E)−1‖ = dist{E, σ(H)}−1 by the spectral theorem. Thus,

dist{EN(h̄), σ (H)} �
2N∑
n=N

ABnh̄
n
2 [(2 + k + n)!]

1
2 � 1

4 (28)

for any given h̄ � h̄1, whenever N0 � N � N1(h̄).
Since El(h̄) → el as h̄ → 0 for 0 � l � k + 1, we can choose h̄2, so that |El(h̄)− el| < 1

4 ,
for all 0 � l � k + 1 and h̄ � h̄2. Note that |ei − ei+1| = 1. As a consequence, we have

|Ek(h̄) − Eα(h̄)| > 1
2 (29)

for all Eα(h̄) ∈ σ(H) \ {Ek(h̄)}, whenever h̄ � h̄2.
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We know that EN(h̄) is asymptotic to Ek(h̄). So, we may apply lemma 4 (with β = h̄
1
2 )

to see that there exists an h̄3 > 0, so that for each h̄ � h̄3, we have an N3(h̄), such that

|Ek(h̄) − EN(h̄)| � 1
4 (30)

for all N0 � N � N3(h̄).
Now (29) and (30) along with the second inequality of (28) imply that

dist{EN(h̄), σ (H)} = |EN(h̄) − Ek(h̄)|
for h̄ � h̄k := min{h̄2, h̄3, h̄1} and N0 � N � Nk(h̄) := min{N1(h̄), N3(h̄)}. This completes
the proof. �

Remark. It is clear from inequality (26) that indeed we have |EN − Ek| � 1
4 for all

N0 � N � N1(h̄). So without harm we can extend Nk(h̄) chosen in the proof to be
Nk(h̄) = N1(h̄).

Theorem 2. For each 0 < g < B−2, there exists 0 < h̄g , such that for each h̄ � h̄g , there is
N(h̄), so that

|EN(h̄)(h̄) − Ek(h̄)| � � exp

(
− �

h̄

)
(31)

for some � > 0 and � > 0.

Proof. We mimic a proof given in [2]. Fix 0 < g < B−2. Then 0 < B2g < 1, so there is
ω > 0, such that B2g = exp(−ω). Consider the function

f (h̄) = Ag exp

[
−ω(1 + k)

4

]
h̄− 4+k

2 exp
(
−ωg

2h̄

)
.

We know that f (h̄) > 0 on (0,∞), and f (h̄) → 0 as h̄ → 0 or h̄ → ∞ so let us choose

h̄4 = inf{h̄ : f (h̄) � 1
4 }

and then set

ˆ̄hg = sup
{
h̄ : h̄ � min{h̄k, h̄4} and

[g
h̄

]
� 2 + k + 2N0

}
.

For h̄ � ˆ̄hg define N(h̄) by the identity 2 + k + 2N(h̄) = [ g

h̄
]. Then clearly N(h̄) � N0. On the

other hand, since we can assume B � 1 and 2 + k + n � g/h̄ for N(h̄) � n � 2N(h̄) we have
2N(h̄)∑
n=N(h̄)

ABnh̄
n
2 [(2 + k + n)!]

1
2 �

2N(h̄)∑
n=N(h̄)

ABnh̄
n
2 (2 + k + n)

2+k+n
2

� Ah̄− 2+k
2

2N(h̄)∑
n=N(h̄)

[B2h̄(2 + k + n)]
2+k+n

2

� Ah̄− 2+k
2

2N(h̄)∑
n=N(h̄)

(B2g)
2+k+n

2 .

Now use that B2g = exp(−ω) < 1 and the fact an � an+1 if a < 1 to obtain
2N(h̄)∑
n=N(h̄)

ABnh̄
n
2 [(2 + k + n)!]

1
2 � Ah̄− 2+k

2

2N(h̄)∑
n=N(h̄)

exp
{
−ω

2
[2 + k + N(h̄)]

}

= Ah̄− 2+k
2 e− ω

4 (2+k)[1 + N(h̄)] exp
{
−ω

4
[2 + k + 2N(h̄)]

}



1216 J H Toloza

� Ah̄− 2+k
2 e− ω

4 (2+k)[2 + k + 2N(h̄)] exp
[
−ω

4

(g

h
− 1

)]
� Age− ω

4 (1+k)h̄− 4+k
2 exp

(
−ωg

4h̄

)
� Age− ω

4 (1+k)h̄
− 4+k

2
4 exp

(
− ωg

4h̄4

)
� 1

4 . (32)

Thus, N(h̄) � Nk(h̄). Therefore, proposition 2 holds for h̄ < ˆ̄hg , which along with (32)
implies

|EN(h̄)(h̄) − Ek(h̄)| � Age− ω
4 (1+k)h̄− 4+k

2 exp
(
−ωg

4h̄

)
for all h̄ � ˆ̄hg . Finally, define

h̄g = max
{
h̄ � ˆ̄hg : h̄− 4+k

2 exp
(
−ωg

8h̄

)
� 1

}
.

Then (31) is true for all h̄ � h̄g with � := ωg/8 and � := Ag exp(−ω(1 + k)/4). �

Proposition 3. Let hk and Nk(h̄) be defined as in proposition 2. Let 	̃N(h̄; x) be the vector
obtained by normalizing the vector obtained by our construction. Let 	̃k(h̄; x) be the
normalized exact eigenvector of H . Then

‖	̃N(h̄; x) − 	̃k(h̄; x)‖ � 8
2N∑
n=N

ABn h̄
n
2 [(2 + k + n)!]

1
2

for all h̄ � h̄k and N0 � N � Nk(h̄).

Proof. Let us note that (27) means

‖(H − EN(h̄))	̃N(h̄; x)‖ �
2N∑
n=N

ABnh̄
n
2 [(2 + k + n)!]

1
2 . (33)

We can write 	̃N(h̄; x) = wN	̃k(h̄; x) + ;N(h̄; x), where ;N is orthogonal to 	̃k and
|wN |2 + ‖;N(h̄; x)‖2 = 1. Since these functions are defined up to a global phase, we can
assume that indeed 0 < wN � 1. From the normalization condition, we obtain

‖;N(h̄; x)‖ � ‖;N(h̄; x)‖2 = 1 − |wN |2 = (1 + wN)(1 − wN) � 1 − wN.

So, we have

‖	̃N(h̄; x) − 	̃k(h̄; x)‖ = ‖(1 − wN)	̃k(h̄; x) + ;N(h̄; x)‖
� (1 − wN) + ‖;N(h̄; x)‖ � 2‖;N(h̄; x)‖. (34)

Since

(H − EN(h̄));N(h̄; x) = (H − EN(h̄))	̃N(h̄; x) − wN(Ek(h̄) − EN(h̄))	̃k(h̄; x)
it follows from (33) and proposition 2 that

‖(H − EN(h̄));N(h̄; x)‖ � 2
2N∑
n=N

ABn h̄
n
2 [(2 + k + n)!]

1
2 (35)

whenever h̄ � h̄k and N0 � N � N(h̄). On the other hand, recall that EN �∈ σ(H) and also
note that (H − EN);N is orthogonal to 	̃k . Thus, we have

‖;N(h̄; x)‖ = ‖(H − EN(h̄))−1
⊥ (H − EN(h̄));N(h̄; x)‖

� ‖(H − EN(h̄))−1
⊥ ‖‖(H − EN(h̄));N(h̄; x)‖ (36)
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where (H −EN)⊥ is the restriction of (H −EN) to the subspace orthogonal to 	̃k . Now make
use of the spectral theorem and (29) to see that

‖(H − EN(h̄))−1
⊥ ‖ = inf

x∈[0,Ek−1]∪[Ek+1,∞)
|x − EN(h̄)|−1 � 2. (37)

Hence (35)–(37) imply

‖;N(h̄; x)‖ � 4
2N∑
n=N

ABn h̄
n
2 [(2 + k + n)!]

1
2 (38)

for all h̄ � h̄k and N0 � N � Nk(h̄). Now combine (34) and (38). �

The next result follows from proposition 3 in the same way that theorem 2 does from
proposition 2.

Theorem 3. If g, h̄g , N(h̄), � and � are defined as in theorem 2, then

‖	̃N(h̄)(h̄; x) − 	̃k(h̄; x)‖ � 8� exp

(
−�

h̄

)
.

Appendix

Here we simplify the formula (18) by using the identity (9)

ξN(x) =
[
Hk + AkW(h̄; x)Ak −

N−1∑
j=1

h̄
j

2 Ej (Ak)
2

] N−1∑
m=0

h̄
m
2 ψm(x)

=
N−1∑
m=0

h̄
m
2 Hkψm(x) +

N−1∑
m=0

h̄
m
2 AkW(h̄; x)Akψm(x)

−
N−1∑
j=1

N−1∑
m=0

h̄
j+m

2 Ej (Ak)
2ψm(x).

We use W(h̄; x) = ∑N+2
j=3 h̄

j−2
2 cjx

j +W [N+2](h̄; x) and change the index by j → j −2. Using
Hkφk = 0, we then obtain

ξN(x) =
N−1∑
m=1

h̄
m
2 Hkψm(x) +

N−1∑
m=0

N∑
j=1

h̄
m+j

2 cj+2Akx
j+2Akψm(x)

+
N−1∑
m=0

h̄
m
2 AkW

[N+2](h̄; x)Akψm(x) −
N−1∑
m=0

N−1∑
j=1

h̄
j+m

2 Ej (Ak)
2ψm(x)

=
N−1∑
n=1

h̄
n
2 Hkψn(x) +

N−1∑
n=1

h̄
n
2

n∑
j=1

cj+2Akx
j+2Akψn−j (x)

+
2N−1∑
n=N

h̄
n
2

N∑
j=n−N+1

cj+2Akx
j+2Akψn−j (x)

+
N−1∑
m=0

h̄
m
2 AkW

[N+2](h̄; x)Akψm(x) −
N−1∑
n=1

h̄
n
2

n∑
j=1

Ej (Ak)
2ψn−j (x)

−
2N−2∑
n=N

h̄
n
2

N−1∑
j=n−N+1

Ej (Ak)
2ψn−j (x).
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The first, second and fifth terms of last equation cancel because of (9). In the third term define
m = n − j and then p = n − N . This yields

ξN(x) =
2N−1∑
n=N

h̄
n
2

N−1∑
m=n−N

cn−m+2Akx
n−m+2Akψm(x)

+
N−1∑
m=0

h̄
m
2 AkW

[N+2](h̄; x)Akψm(x) −
2N−2∑
n=N

h̄
n
2

N−1∑
j=n−N+1

Ej (Ak)
2ψn−j (x)

=
N−1∑
p=0

N−1∑
m=p

h̄
p+N

2 cp+N−m+2Akx
p+N−m+2Akψm(x)

+
N−1∑
m=0

h̄
m
2 AkW

[N+2](h̄; x)Akψm(x) −
2N−2∑
n=N

h̄
n
2

N−1∑
j=n−N+1

Ej (Ak)
2ψn−j (x)

=
N−1∑
m=0

h̄
m
2

m∑
p=0

h̄
p+N−m

2 cp+N−m+2Akx
p+N−m+2Akψm(x)

+
N−1∑
m=0

h̄
m
2 AkW

[N+2](h̄; x)Akψm(x) −
2N−2∑
n=N

h̄
n
2

N−1∑
j=n−N+1

Ej (Ak)
2ψn−j (x)

=
N−1∑
m=0

h̄
m
2 Ak

[ m+2∑
i=2

h̄
i+N−m−2

2 ci+N−mx
i+N−m + W [N+2](h̄; x)

]
Akψm(x)

−
2N−2∑
n=N

h̄
n
2

N−1∑
j=n−N+1

Ej (Ak)
2ψn−j (x).

Finally, note that h̄
j−2

2 cjx
j + W [j+1](h̄; x) = W [j ](h̄; x). It then follows that

ξN(x) =
N−1∑
m=0

h̄
m
2 AkW

[N−m+1](h̄; x)Akψn(x) −
2N−2∑
n=N

h̄
n
2

N−1∑
j=n−N+1

Ej (Ak)
2ψn−j (x).
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